Category Archives: materials

Future kinetic hyper-weapons

I wrote up some new high-end weapons that are feasible for use mid-century or soon after. This is the summary slide, and the full article describing how they all work follows as a pdf.

weapons

Full article is here: Hyper-weapons

Advertisements

The all-carbon Katana

This idea is just sci-fi, for now, and relates to my sci-fi book.

Even with all the available fancy guns available to them, modern sci-fi heroes often use swords. Gi Joe, Blade, The Matrix, Riddick, Star Wars are just a few that spring immediately to mind.

Often they use Katanas or Ninja swords because they look good.

In my last post I mentioned cubic carbon. I originally introduced the concept in my main blog at:

http://timeguide.wordpress.com/2013/04/12/22nd-century-speculative-sci-fi-super-chemistry/

Cubic carbon would be very hard, it can be made at all. It could hold an incredibly sharp edge. The blade of a Katana is usually made of folded carbon steel, but  with carbon fibre and graphene string to make and wrap the handle and guards, composites of carbon nanotubes, graphene and cubic carbon for the blade, and a cubic carbon edge, with maybe a few diamonds and graphite patterning to decorate Carbon Girl’s Katana, a pure carbon Katana could be made for both her and Carbon Man. No other materials are needed at all. 

Perfect. But if they aren’t allowed to take them with them for some reason, they can quickly fabricate temporary but lethal substitute using nothing more than carbon tape.

Lighter-than-helium carbon foam – how it works

I just did a back-of-the-envelope calculation to work out what size of sphere containing a vacuum would give the same average density as helium at room temperature, if the sphere is made of graphene, the new one-size-does-everything-you-can-imagine wonder material.

Why? Well, the Yanks have just prototyped a big airship and it uses helium for buoyancy. http://www.dailymail.co.uk/sciencetech/article-2257201/The-astonishing-Aeroscraft–new-type-rigid-airship-thats-set-revolutionise-haulage-tourism–warfare.html

Helium weighs 0.164kg per cubic meter. Graphene sheet weighs only 0.77mg per square meter. Mind you, the data source was Wikipedia so don’t start a business based on this without checking! If you could make a sphere out of a single layer of graphene, and have a vacuum inside (graphene is allegedly impervious to gas) it would become less dense than helium at sizes above 0.014mm. Wow! That’s very small. I expected ping pong ball sizes when I started and knew that would never work because large thin spheres would be likely to collapse. 14 micron spheres are too small to see with the naked eye, not much bigger than skin cells, maybe they would work OK.

Confession time now. I have no idea whether a single layer of graphene is absolutely impervious to gas, it says so on some websites but it says a lot of things on some websites that are total nonsense.

The obvious downside even if it could work is that graphene is still very expensive, but everything is when is starts off. Imagine how much you could sell a plastic cup for to an Egyptian Pharaoh.

Helium is an endangered resource. We use it for party balloons and then it goes into the atmosphere and from there leaks into space. It is hard to replace, at least for the next few decades. If we could use common elements like carbon as a substitute that would be good news. Getting the cost of production down is just engineering and people are good at that when there is an incentive.

So in the future, maybe we could fill party balloons and blimps with graphene foam. You could make huge airships happily with it, that don’t need helium of hydrogen.

Tiny particles that size readily behave as a fluid and can easily be pumped. You could make lighter-than-air building materials for ultra-tall skyscrapers, launch platforms, floating Avatar-style sky islands and so on.

You could also make small clusters of them to carry tiny payloads for espionage or terrorism. Floating invisibly tiny particles of clever electronics around has good and bad uses. You could distribute explosives with floating particles that congeal into whatever shape you want on whatever target you want using self-organisation and liberal use of EM fields. I don’t even have that sort of stuff on Halo. I’d better stop now before I start laughing evilly and muttering about taking over the world.

Carbon foam can be adjusted to be soft and malleable or hard and rigid. It can be used to make balloons for transporting freight or people, just like airships, and for some of the same military uses. Foam balloons will show a multitude of uses.

The Carbon Trio’s Base (The Car-Base?)

Everyone needs a home, even the military and superheroes. I describe the basics of how the super-tall structure on which the Carbon Trio’s home is built here:

http://carbondevices.com/2013/06/28/the-carbon-trios-home-the-car-base/

Future posts on that sister blog will outline some of the rooms, materials and devices in it. From a military point of view though, probably the most useful aspect is the ability to place it on top of a structure 30km tall, and theoretically even 600km tall using the latest strength figures for graphene. Some of what follows will just be place-markers for future posts.

From such high altitudes, surveillance capability would be very high. So would the ability to use it to launch gliding vehicles and to house directed energy weapons, and obviously make it easier to attack space-based targets or launch other weaponry and equipment into space. It would therefore be a valuable target for opposing forces and would need protection. Assuming that the military of at least one country have adopted the Carbon Trio as citizens or allies, it is reasonable to assume that the platform would therefore be permitted to house defense-related systems.

Lasers are an obvious choice for long-range attack on incoming missiles or planes. Graphene has already been noted for its excellent properties in making lasers, so graphene lasers would certainly be a top priority. Electron pipes would be useful too. Electron pipes are basically linear accelerators that could fire high energy particle beams. I invented them originally as a high-speed upgrade to optical fibre. The original invention dates back to 1991 and is available here: http://www.futurizon.com/wp-content/uploads/2013/05/electronpipejul91.pdf. As a telecomms system, it offers high bandwidth and could certainly be used for high speed comms around the platform to link the high bandwidth devices together. As a weapon system, the Carbon Trio would need to increase the length of the pipes by looping them around their base, increase the voltage by a few zeros, and thus produce a high energy particle beam. The pipes could be nanotubes or graphene tubes, and the coils use graphene wire. A large number of them could be used in parallel to make an intense beam. With the power supply sufficient (I’ll discuss some power generation potential in a later post).

The Car-Base would also be able to use mirrors to deflect solar energy. For weapon use, this would mostly come from a space-based array of mirrors. The maximum power level would mainly be limited by international treaties. The sun certainly provides intense enough power to make useful redirection weapons feasible.

Graphene dart swarms could also be released from a high altitude platform. These would be very thin and sharp, so could accumulate very high velocity before homing in on their target. These can wipe out an entire force of soldiers, easily penetrating standard issue protective helmets or a vehicle roof. Again, a future post will give more detail.

The defence of the Car-Base would not depend solely on weapons. It would also have formidable defences. The structural materials would be extremely strong – carbon fibre would probably be the weakest of them and even that is a good starting point. Graphene, carbon chainmail, nanotubes, carbon foam, cubic carbon and diamond are all pure carbon with very high specs, although a few are still expensive to make, future technology will bring costs down a great deal.

The combination of these materials offers a wide range of excellent electrical properties too. Using variable electric and magnetic fields as well as the principles of self organisation, evolution and self assembly, elaborate self healing structures could be assembled and maintained. They could be ruptured in a powerful attack, but could quickly self repair. Some structural components might provide small areas of force fields that could provide some protection but allow ultra-high speed opening and closing of gateways.

And of course, the final line of defense would be a squad of combat drones, under Carbo’s command, naturally.