Monthly Archives: June 2013

Carbon foam balloon as military platform

In my sci-fi book, the Carballoon is a huge carbon balloon made mainly from graphene foam. (In a nutshell, graphene foam is made up of tiny graphene spheres with a vacuum inside to give an average density lower than helium.)

It has many civilian uses as described there, but is also useful militarily. 

Some of the smaller balloons that it can send out would have reconnaissance or espionage functions. Some would have weapon systems on board, and having variable buoyancy, could sneak into an area at high altitude unnoticed before descending and bringing death from above. They could occupy some of the roles occupied by today’s drones, so would likely be covered by similar legislation.

Subject to that legislation, weaponry could include guns, directed energy or particle beam weapons, and graphene dart swarms, as well as missiles and bombs. These weapons would potentially scale with balloon size so that the mothership Car-Balloon would be very powerful.

The main advantage balloons convey is range and duration. They could stay afloat permanently without consuming power. They could sit stealthily for long periods on standby before being woken up to come into action. In fact, all the time they are afloat, the solar cells on the upper sections could accumulate energy and store it in graphene super-capacitors, to be released as required.

Graphene foam would be a very low density solid, so it would not fall if punctured. The pieces would stay afloat even if it were broken up. Self-organisation and assembly functionality could be distributed throughout the foam to allow pieces to come back together, and thus enable continuous self-repair.


Carbon Girl’s stilettoes

Our athletic, stylish and elegant, but nevertheless highly formidable Carbon Girl wears some pretty mean shoes. The heels make very potent weapons. The heel has to work on normal ground, so it uses a concertina design using carbon muscles to allow a broad base to be extended for softer ground, making sure she doesn’t sink into soft grass at weddings. However, with a single thought and emotion recognition based command, the broad heel is drawn upwards, revealing a solid cubic-carbon stiletto coming to a single carbon atom point, with an edge extending all the way up the reverse of the heel, far sharper than possible with any other material. Able to cut through anything, the tip can even penetrate the diamond helmet worn by her nemesis.

The bulk of the shoe is made of carbon fibre. Intricate but electronically changeable patterns in the upper layers enable a wide variety of appearances to be achieved, able to be switched into a computer display at will. The heel height is entirely variable, as is the profile. Carbon Girl only needs one pair, but she still has lots.

Lighter-than-helium carbon foam – how it works

I just did a back-of-the-envelope calculation to work out what size of sphere containing a vacuum would give the same average density as helium at room temperature, if the sphere is made of graphene, the new one-size-does-everything-you-can-imagine wonder material.

Why? Well, the Yanks have just prototyped a big airship and it uses helium for buoyancy.–new-type-rigid-airship-thats-set-revolutionise-haulage-tourism–warfare.html

Helium weighs 0.164kg per cubic meter. Graphene sheet weighs only 0.77mg per square meter. Mind you, the data source was Wikipedia so don’t start a business based on this without checking! If you could make a sphere out of a single layer of graphene, and have a vacuum inside (graphene is allegedly impervious to gas) it would become less dense than helium at sizes above 0.014mm. Wow! That’s very small. I expected ping pong ball sizes when I started and knew that would never work because large thin spheres would be likely to collapse. 14 micron spheres are too small to see with the naked eye, not much bigger than skin cells, maybe they would work OK.

Confession time now. I have no idea whether a single layer of graphene is absolutely impervious to gas, it says so on some websites but it says a lot of things on some websites that are total nonsense.

The obvious downside even if it could work is that graphene is still very expensive, but everything is when is starts off. Imagine how much you could sell a plastic cup for to an Egyptian Pharaoh.

Helium is an endangered resource. We use it for party balloons and then it goes into the atmosphere and from there leaks into space. It is hard to replace, at least for the next few decades. If we could use common elements like carbon as a substitute that would be good news. Getting the cost of production down is just engineering and people are good at that when there is an incentive.

So in the future, maybe we could fill party balloons and blimps with graphene foam. You could make huge airships happily with it, that don’t need helium of hydrogen.

Tiny particles that size readily behave as a fluid and can easily be pumped. You could make lighter-than-air building materials for ultra-tall skyscrapers, launch platforms, floating Avatar-style sky islands and so on.

You could also make small clusters of them to carry tiny payloads for espionage or terrorism. Floating invisibly tiny particles of clever electronics around has good and bad uses. You could distribute explosives with floating particles that congeal into whatever shape you want on whatever target you want using self-organisation and liberal use of EM fields. I don’t even have that sort of stuff on Halo. I’d better stop now before I start laughing evilly and muttering about taking over the world.

Carbon foam can be adjusted to be soft and malleable or hard and rigid. It can be used to make balloons for transporting freight or people, just like airships, and for some of the same military uses. Foam balloons will show a multitude of uses.

Carbon foam – lighter than helium, stronger than steel, perfect for padded bra armor

A Carbon wardrobe could hold a huge variety of garments and styles, just like yours. Not all wardrobes include padded bras, but for those that do:

Even using lots of connected layers, the carbon chain-mail protection layers of carbon armor would still be pretty thin and highly transparent. They would block and deflect damage from swords and knives, but another layer of hard but flexible carbon foam between layers of clothes would help to absorb energy from bullets too. Any areas where damage does occur can be swiftly repaired using a variety of self healing mechanisms.

For potential superheroes who feel they need a bit of extra padding up top, carbon foam feels comfortable, keeps the body cool, adds extra protection, and adds curves. It is lighter than helium, so it also gives a bit of extra lift.

The Carbon Trio’s Base (The Car-Base?)

Everyone needs a home, even the military and superheroes. I describe the basics of how the super-tall structure on which the Carbon Trio’s home is built here:

Future posts on that sister blog will outline some of the rooms, materials and devices in it. From a military point of view though, probably the most useful aspect is the ability to place it on top of a structure 30km tall, and theoretically even 600km tall using the latest strength figures for graphene. Some of what follows will just be place-markers for future posts.

From such high altitudes, surveillance capability would be very high. So would the ability to use it to launch gliding vehicles and to house directed energy weapons, and obviously make it easier to attack space-based targets or launch other weaponry and equipment into space. It would therefore be a valuable target for opposing forces and would need protection. Assuming that the military of at least one country have adopted the Carbon Trio as citizens or allies, it is reasonable to assume that the platform would therefore be permitted to house defense-related systems.

Lasers are an obvious choice for long-range attack on incoming missiles or planes. Graphene has already been noted for its excellent properties in making lasers, so graphene lasers would certainly be a top priority. Electron pipes would be useful too. Electron pipes are basically linear accelerators that could fire high energy particle beams. I invented them originally as a high-speed upgrade to optical fibre. The original invention dates back to 1991 and is available here: As a telecomms system, it offers high bandwidth and could certainly be used for high speed comms around the platform to link the high bandwidth devices together. As a weapon system, the Carbon Trio would need to increase the length of the pipes by looping them around their base, increase the voltage by a few zeros, and thus produce a high energy particle beam. The pipes could be nanotubes or graphene tubes, and the coils use graphene wire. A large number of them could be used in parallel to make an intense beam. With the power supply sufficient (I’ll discuss some power generation potential in a later post).

The Car-Base would also be able to use mirrors to deflect solar energy. For weapon use, this would mostly come from a space-based array of mirrors. The maximum power level would mainly be limited by international treaties. The sun certainly provides intense enough power to make useful redirection weapons feasible.

Graphene dart swarms could also be released from a high altitude platform. These would be very thin and sharp, so could accumulate very high velocity before homing in on their target. These can wipe out an entire force of soldiers, easily penetrating standard issue protective helmets or a vehicle roof. Again, a future post will give more detail.

The defence of the Car-Base would not depend solely on weapons. It would also have formidable defences. The structural materials would be extremely strong – carbon fibre would probably be the weakest of them and even that is a good starting point. Graphene, carbon chainmail, nanotubes, carbon foam, cubic carbon and diamond are all pure carbon with very high specs, although a few are still expensive to make, future technology will bring costs down a great deal.

The combination of these materials offers a wide range of excellent electrical properties too. Using variable electric and magnetic fields as well as the principles of self organisation, evolution and self assembly, elaborate self healing structures could be assembled and maintained. They could be ruptured in a powerful attack, but could quickly self repair. Some structural components might provide small areas of force fields that could provide some protection but allow ultra-high speed opening and closing of gateways.

And of course, the final line of defense would be a squad of combat drones, under Carbo’s command, naturally.

Carbon armor underlayer

The last layer of defense in any armor is a good protective under-layer. Carbon chain-mail is one of the upper layers. Translucent, strong and stretchy, it protects against stabbing weapons.


Graphene, picture from


A Chainmail structure, picture from

It’s a bit easier to see how the links overlap in this pic:

colour chainmail

pic from

So, just thinking out loud, perhaps the rings in the chainmail above could be rings of carbon, just 6 atoms each. If so, would this be better than graphene at anything useful, or not? Would longer rings work better? The idea of carbon nanotube chainmail is about a decade old.

Carbon chainmail

Powerpoint really is not designed as a proper drawing tool and not having a week to spare, I didn’t bother doing the link overlaps or even the bonds properly in my pic, but together with the other two, I think you will get the idea fine.

Military hoverboards and hovercars

The basic design principles are outlined in, recently updated

The article also describes in passing how weak force fields could be realized. I’ll look at this more in future posts.

Militarising them is pretty obvious. Thicker and stronger materials for general shielding, reactive armour, faster engines, more maneuverability etc are all easy to engineer in. I’ll consider approaches to building reactive armor separately. For military use, comms, identification, encryption and so on are also essential but routine approaches to these would be fine.

Adding weaponry and surveillance capability is also easy, but different weapons and sensor capabilities deserve their own articles.

Adding invisibility to a hoverboard is not easy, and would be pretty pointless if the invisibility doesn’t also extend to the rider, but stealth for the car can certainly be optimized. The surface coating can act as a video display, so routine invisibility techniques would work – cameras on one side feeding display on the opposite side. This won’t make the car invisible, but it could make it less conspicuous. Similarly, straightforward camouflage based on surroundings could be implemented using surface-covering displays, without the need for extensive real-time camera links.

Mechanically, force fields would be far weaker than carbon materials, so they would only have military applications for disrupting electromagnetic attacks. They could have more use at high altitudes to help deflect radiation.